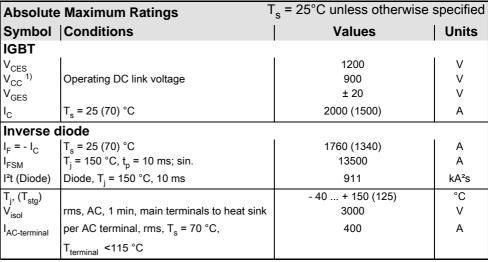
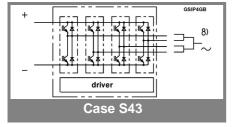

SKiiP 2013GB122-4DL

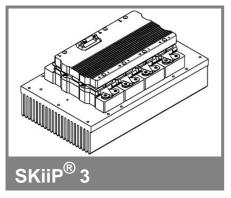

2-pack-integrated intelligent Power System

Power section SKiiP 2013GB122-4DL


Preliminary Data

Features

- SKiiP technology inside
- SPT (Soft Punch Trough) IGBTs
- CAL diode technology
- · Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized File no. E63532
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- AC connection busbars must be connected by the user; copper busbars available on request



Characteristics T _s = 25°C unles						°C unless	otherwise	specified
	Conditions				min.	typ.	max.	Units
IGBT						7.		'
V _{CEsat}	I _C = 1200 measured at t	A, T _j = 25 (terminal	(125) °C;			2,3 (2,5)	2,6	V
V_{CEO}	T _i = 25 (125) °C; at terminal					1,1 (1)	1,3 (1,2)	V
r_{CE}		25) °C; at te				1 (1,2)	1,1 (1,4)	mΩ
I _{CES}	$V'_{GE} = 0 \text{ V, } V_{CE} = V_{CES},$ $T_i = 25 (125) \text{ °C}$					mA		
$E_{on} + E_{off}$	$I_{\rm C} = 1200$	A, $V_{CC} = 6$	00 V			mJ		
	T _j = 125 °C	C, V _{CC} = 90	00 V			mJ		
R _{CC+EE}	terminal cl	hip, T _i = 25	°C			mΩ		
L _{CE}	top, bottor	n [′]				nΗ		
C _{CHC}	per phase	, AC-side				nF		
Inverse diode								•
$V_F = V_{EC}$	I _F = 1200 A measured at t		125) °C			1,95 (1,7)	2,1	V
V_{TO}	T _i = 25 (12	25) °C				1,1 (0,8)	1,2 (0,9)	V
r _T	$T_i = 25 (12)$					0,7 (0,8)	0,8 (0,9)	mΩ
Ė _{rr}	$I_{\rm C}^{\rm J} = 1200$		00 V			96		mJ
	T _j = 125 °0	C, V _{CC} = 90	00 V			122		mJ
Mechanical data								
M _{dc}	DC termin	als, SI Uni	ts		6		8	Nm
M _{ac}	AC termina	*			13		15	Nm
W	SKiiP® 3 System w/o heat sink					3,1		kg
w	heat sink					9,7		kg
Thermal characteristics (PX 16 heat sink with fan SKF 16B-230-1); "s" reference to heat sink; "r" reference to built-in temperature sensor								
R _{th(j-s)I}	per IGBT	•				•	0,015	K/W
R _{th(j-s)D}	per diode						0,029	K/W
Z _{th}	R _i (mK/W) (max. values)				1	' 		
	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$	5,6	6	6,4	0	363	0,18	0,04	1
$Z_{\text{th(j-r)D}}$	10	8,4	14,8	14,8	50	5	0,25	0,04
$Z_{\text{th(r-a)}}$	3,1	17,3	3,7	0,9	230	78	13	0,4

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 2013GB122-4DL

2-pack-integrated intelligent Power System

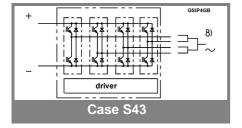
2-pack integrated gate driver SKiiP 2013GB122-4DL

Preliminary Data

Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute Maximum Ratings		$T_a = 25$ °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
$V_{\rm isollO}$	input / output (AC, rms, 2s)	3000	V	
V _{isolPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1170	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	8	kHz	
f_{out}	output frequency for I=I _C ; sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	eristics	(T _a = 25°C)			
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	324+39*f/kHz+0,00011*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C_{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
tpERRRESET	error memory reset time	9			μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		2000		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level (I _{analog} OUT = 10 V)		2500		А
T_tp	over temperature protection	110		120	°C
UDCTRIP	U_{DC} -protection ($U_{analog OUT} = 9 V$);	i	not mplemented	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

